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(a) Find the general solution to the differential equation
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(b) Find the particular solution to the differential equation
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(a) Find the general solution to the differential equation
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(b) Find the particular solution to the differential equation
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(a) Show that the general solution to the differential equation
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where 4 and k are constants.
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(ii) the constant k is less than 0. . 4 <
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(a) Show that the general solution to the differential equation y
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where A and k are constants.

[5]

-

(b) On separate diagrams sketeh a graph of the solution for x = 0 in the instances when A~
(i) the constant k is greater than 0, >
(ii) the constant k is less than 0.
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The acceleration of a particle moving in a straight line is given by the differential _é_ﬁ_ | S it dt o7 a1 4t
equation A
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where s mis the displacement of the particle relative to a fixed point 0, and t is the
elapsed time in seconds. The particle starts its journey with a velocity of —6 ms™*,
from a point 50 min the positive direction from the paint 0.
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Find an expression for the displacement, s, of the particle in terms of ¢,
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minutes the volume of water in the container has dropped by 30%, write down and
solve a differential equation connecting the volume, V, of water in the container to

the time, t.
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Newton's Law of Cooling states that the rate of cooling of an object is directly

proportional to the difference between the object’s temperature and the ambient d _ A _
e (i ¢ of the object’s surr ings). 3{7) :’:—; = %(ﬂb ——~> Sj(]’) :S)’ = S Fox) Ix

(@) By setting up and solving an appropriate differential equation, show that
T = Ty + Ae™
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where T °C s the temperature of the object, T, °C is the ambient temperature, t is

time, and k > 0 and A are both constants. You may assume in working out your ( 4T B
solution that the ambient temperature is constant, and that the temperature of the Sy 41

object is greater than the ambient temperature.
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A meat processing factory must store its products at a temperature below —1 °C.

Due to the production process, products, before cooling, typically have a temperature
between 5 °C and 10 °C.
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The company therefore has a policy that any products failing to cool to below —1 °C 2 H z e kt
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(b) A product that has just finished being processed has a temperature of 7 °C and is i anl e

immediately placed in the freezer. One minute later its temperature has dropped to e -1

4.7 °C, Determine whether or not this product will need to be discarded. ’1" = ,1— \q + e (Q’.
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Newton'’s Law of Cooling states that the rate of cooling of an object is directly

proportional to the difference between the object’s temperature and the ambient
temperature (| e of the object’s surr ).
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(a) By setting up and solving an appropriate differential equation, show that

T = Ty + Ae™ -wt
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where T °C is the temperature of the object, T,,,,,;, °C is the ambient temperature, t is Y ,1_ = R (nlﬁsur""j 2 5 F;"utglx

time, and k > 0 and A are both constants. You may assume in working out your "t AT o
solution that the ambient temperature is constant, and that the temperature of the

object is greater than the ambient temperature.
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A meat processing factory must store its products at a temperature below —1 °C,

Due to the production process, products, before cooling, typically have a temperature
between 5 °Cand 10 °C.

The company therefore has a policy that any products failing to cool to below —1*C
within 6 minutes of being processed must be discarded.

The factory stores its products in a freezer with a constant ambient temperature of
—4°C

(bYA product that has just finished being processed has a temperature of 7
immediately placed in the freezer,f One minute later its temperature has dropped to
4.7 °C. Determine whether or not this product will need to be discarded.
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(a) Using the standard integral result &) 4 . 1 %
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with boundary condition x = 0, ¥ = &, jmay be written in the form
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(b) (i) Show that the relationship between x and y in |un G + %)I = |un (i + E)I may
also be expi
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by the set of all of the forms

y=x+2nn or y=-x+@n-Dr
where n is an integer.

(ii) Hence deduce that the particular solution to the differential equation in part (a),
with the given boundary condition,is y=m —x.
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(a) Using the standard integral result
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(where k is a constant, and ¢ is a constant of integration), show that the solution to
the differential equation

d
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‘with boundary condition x = 0, y = m,)may be written in the form

fan G+ 2| = fan G+ )]
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(b) (i) Show that the relationship between x and y in |ta|| G + %)I = Iﬂn ('2-( + E)l may
also be expressed by the set of all equations of the forms
y=x+2nwr or y=-x+Q@n—-1)w

‘where n is an integer.

(i) Hence deduce that the particular solution to the differential equation in part (a),
‘with the given boundary condition, is y =7 —x.
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Atree disease is spreading throughout a large forested area.

e dn . = _t__ dn
The rate of increase in the number of infected trees is modelled by the differential T 1'- ~N CM i ) IR e k
equation i H s ‘] a4t
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where N is the number of infected trees, ¢ is the time in days since the disease was first NG '.)

identified and k is a positive constant.

(a) Solve the differential equation above, and show that the general solution can be
written in the form

1

N=1—em

‘where A is a positive constant.
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(b) Initially two trees were identified as diseased.
xi+c w7 119 e
A fortnight later, 4 trees were infected. e g (CL\(_E’- ) - Ae (ﬁ g »D
Using this information, find the values of the constants A and k. o €
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(c) By considering the solution to the differential equation along with the values of A N - N(Ae ) | foc oy valun

and k found in part (b), suggest a range of values of ¢ for which the model might be
considered reliable.

‘\j(i‘ﬁ?_kt):"( of <
\

Sg‘:Aro.T;ov\ oF \/of'\n\n\ltj v e L
N * 1-fAet

3P L =560 = et dy = §Fodx

Q8b

\,) When 20, N2
1 » 1
B2 =0 ~ A

1
ﬁ’?_ﬁﬂ] ﬁ‘7 ﬂ=_{

2-2A =\

wlen t’ll‘}, N;Ll

Q8c



A tree disease is spreading throughout a large forested area.
The rate of increase in the number of infected trees is modelled by the differential
equation

v EN(N-1), N>1

de '
where N is the number of infected trees, t is the time in days since the disease was first
identified and k is a positive constant.

(a) Solve the differential equation above, and show that the general solution can be
written in the form
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where 4 is a positive constant. and 1 o o wuer oF Treees.
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(b) Initially two trees were identified as diseased.

A fortnight later, 4 trees were infected.
Using this information, find the values of the constants A and k.
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(c) By considering the solution to the differential equation along with the values of A
and k found in part (b), suggest a range of values of t for which the model might be
considered reliable,
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